Image De-raining Using a Conditional Generative Adversarial Network
نویسندگان
چکیده
Severe weather conditions such as rain and snow adversely affect the visual quality of images captured under such conditions thus rendering them useless for further usage and sharing. In addition, such degraded images drastically affect performance of vision systems. Hence, it is important to solve the problem of single image de-raining/de-snowing. However, this is a difficult problem to solve due to its inherent ill-posed nature. Existing approaches attempt to introduce prior information to convert it into a well-posed problem. In this paper, we investigate a new point of view in addressing the single image de-raining problem. Instead of focusing only on deciding what is a good prior or a good framework to achieve good quantitative and qualitative performance, we also ensure that the de-rained image itself does not degrade the performance of a given computer vision algorithm such as detection and classification. In other words, the de-rained result should be indistinguishable from its corresponding clear image to a given discriminator. This criterion can be directly incorporated into the optimization framework by using the recently introduced conditional generative adversarial networks (GANs). To minimize artifacts introduced by GANs and ensure better visual quality, a new refined loss function is introduced. Based on this, we propose a novel single image de-raining method called Image De-raining Conditional General Adversarial Network (ID-CGAN), which considers quantitative, visual and also discriminative performance into the objective function. Experiments evaluated on synthetic images and real images show that the proposed method outperforms many recent state-of-the-art single image de-raining methods in terms of quantitative and visual performance.
منابع مشابه
Perceptual Adversarial Networks for Image-to-Image Transformation
In this paper, we propose a principled Perceptual Adversarial Networks (PAN) for image-to-image transformation tasks. Unlike existing application-specific algorithms, PAN provides a generic framework of learning mapping relationship between paired images (Fig. 1), such as mapping a rainy image to its de-rained counterpart, object edges to its photo, semantic labels to a scenes image, etc. The p...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملHigh-Quality Face Image SR Using Conditional Generative Adversarial Networks
We propose a novel single face image superresolution method, which named Face Conditional Generative Adversarial Network(FCGAN), based on boundary equilibrium generative adversarial networks. Without taking any facial prior information, our method can generate a high-resolution face image from a low-resolution one. Compared with existing studies, both our training and testing phases are end-toe...
متن کاملConditional generative adversarial nets for convolutional face generation
We apply an extension of generative adversarial networks (GANs) [8] to a conditional setting. In the GAN framework, a “generator” network is tasked with fooling a “discriminator” network into believing that its own samples are real data. We add the capability for each network to condition on some arbitrary external data which describes the image being generated or discriminated. By varying the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.05957 شماره
صفحات -
تاریخ انتشار 2017